Verifying Components While Guaranteeing Compositionality

Abstraction-Based Tool and Method Tackles Complexity of CPS Verification
SRI International, Menio Park, California

CPS Verification: Need and Challenge

- Simulation of CPS with complex dynamics can yield misleading results and does not provide proofs
- Verification tools cannot handle differential equations of CPS dynamics

Solution: Abstraction and Compositionality

Complexity (Size of state space x Type of Dynamics x Property)

Qualitative Abstraction	Relational Abstraction
Abstracts state space E.g., dynamics abstracted to increasing/decreasing or positive/negative	Abstracts transition relation E.g., dynamics abstracted to increasing/decreasing at certain rate or amount of pos/neg

Relational Abstraction

 Effective relational abstractions can be automatically computed for several system dynamics classes

Class	dx⊄ dt	Relational Abstraction
Timed Systems	$\dot{x} = 1, \dot{y} = 1$	x' - x = y' - y
Multirate Systems	$\dot{x} = 2, \dot{y} = 3$	$\frac{x'-x}{2} = \frac{y'-y}{3}$
Linear Hybrid Systems	$\dot{\vec{x}} = A\vec{x}$	$0 \le p' \le p \lor 0 \ge p' \ge p, p = \vec{c}^T \vec{x},$ \vec{c} Eigenvector of A^T corr. to neg. eigenval

Demonstrated Verification on Several Hybrid System Benchmarks

Rel. Abs. done for each mode/component, each corresponding to open system

Verification results hold for composed system

Example: Vehicle Powertrain

From [Dutertre and Sorea, 2004]

Approach

- Relational Abstraction is an over-approximation of the transitive closure of the transition relation
- Useful for proving safety properties and establishing conservative safety bounds

Automated Verification Tool

The results produced by abstraction techniques enable compositional verification when components are put together to build systems

Other Work: Few automated tools for verifying systems with mixed discrete/continuous dynamics, and none are compositional

Benefits

- · Enables analyzability of complex systems
- On Hybrid System benchmarks, verification time reduces from 10 hours to few minutes (100x improvement)

Feature

Compositional analysis handles open components with hybrid dynamics

Best of Breed

 Approach compatible with other abstraction and model-checking techniques

Contact: Ashish.Tiwari@sri.com